[18] K. B. Konstantinov and C. L. Cooney, “White paper on continuous bioprocessing.
May 20-21, 2014 continuous manufacturing symposium,” J. Pharm. Sci., vol. 104,
no. 3, pp. 813–820, Mar. 2015.
[19] V. Chotteau, “Perfusion Processes,” in Animal Cell Culture, M. Al-Rubeai, Ed.
Cham: Springer International Publishing, 2015, pp. 407–443.
[20] S. S. Ozturk, “Engineering challenges in high density cell culture systems,”
Cytotechnology, vol. 22, no. 1–3, pp. 3–16, Jan. 1996.
[21] D. G. Kilburn and A. L. van Wezel, “The effect of growth rate in continuous-flow
cultures on the replication of rubella virus in BHK cells,” J. Gen. Virol., vol. 9,
no. 1, pp. 1–7, Oct. 1970.
[22] T. Frensing et al., “Continuous influenza virus production in cell culture shows a
periodic accumulation of defective interfering particles,” PLoS One, vol. 8, no. 9,
p. e72288, 2013.
[23] G. P. Pijlman, J. de Vrij, F. J. van den End, J. M. Vlak, and D. E. Martens,
“Evaluation of baculovirus expression vectors with enhanced stability in continuous
cascaded insect-cell bioreactors,” Biotechnol. Bioeng., vol. 87, no. 6, pp. 743–753,
Sep. 2004.
[24] R. Kompier, J. Tramper, and J. M. Vlak, “A continuous process for the production
of baculovirus using insect-cell cultures,” Biotechnol. Lett., vol. 10, no. 12,
pp. 849–854, 1988.
[25] F. L. van Lier, E. J. van den End, C. D. de Gooijer, J. M. Vlak, and J. Tramper,
“Continuous production of baculovirus in a cascade of insect-cell reactors,” Appl.
Microbiol Biotechnol., vol. 33, no. 1, pp. 43–47, Apr. 1990.
[26] G. B. Gori, “Continuous cultivation of virus in cell suspensions by use of the ly-
sostat,” (in eng), Appl. Microbiol., vol. 13, no. 6, pp. 909–917, Nov. 1965.
[27] F. Tapia, I. Jordan, Y. Genzel, and U. Reichl, “Efficient and stable production of
modified vaccinia Ankara virus in two-stage semi-continuous and in continuous
stirred tank cultivation systems,” PLoS One, vol. 12, no. 8, p. e0182553, 2017.
[28] G. Gränicher, F. Tapia, I. Behrendt, I. Jordan, Y. Genzel, and U. Reichl,
“Production of modified vaccinia Ankara virus by intensified cell cultures: A
comparison of platform technologies for viral vector production,” (in eng), J.
Biotechnol. , vol. 16, no. 1, p. e2000024, Special Issue: Biomanufacturing of Gene
Therapy Vectors, 2020.
[29] F. Tapia, D. Vazquez-Ramirez, Y. Genzel, and U. Reichl, “Bioreactors for high cell
density and continuous multi-stage cultivations: Options for process intensification
in cell culture-based viral vaccine production,” Appl. Microbiol. Biotechnol.,
vol. 100, no. 5, pp. 2121–2132, Mar. 2016.
[30] T. B. Ferreira, M. J. Carrondo, and P. M. Alves, “Effect of ammonia production on
intracellular pH: Consequent effect on adenovirus vector production,” J.
Biotechnol., vol. 129, no. 3, pp. 433–438, May 2007.
[31] I. Nadeau and A. Kamen, “Production of adenovirus vector for gene therapy,”
Biotechnol. Adv., vol. 20, no. 7–8, pp. 475–489, Jan. 2003.
[32] P. Perrin, S. Madhusudana, C. Gontier-Jallet, S. Petres, N. Tordo, and O.-W.
Merten, “An experimental rabies vaccine produced with a new BHK-21 suspension
cell culture process: Use of serum-free medium and perfusion-reactor system,”
Vaccine, vol. 13, no. 13, pp. 1244–1250, 1995.
[33] A. Bock, J. Schulze-Horsel, J. Schwarzer, E. Rapp, Y. Genzel, and U. Reichl,
“High-density microcarrier cell cultures for influenza virus production,” Biotechnol.
Prog., vol. 27, no. 1, pp. 241–250, 2011.
[34] H. A. Wood, L. B. Johnston, and J. P. Burand, “Inhibition of Autographa californica
nuclear polyhedrosis virus replication in high-density Trichoplusia ni cell cultures,”
(in eng), Virology, vol. 119, no. 2, pp. 245–254, Jun. 1982.
168
Bioprocessing of Viral Vaccines